La ingeniería de precisión se puede considerar como aquella ingeniería orientada al diseño y desarrollo de máquinas, equipos y productos, siguiendo unos principios básicos orientados a priorizar la precisión sobre cualquier otro requisito.
Popularmente, la precisión se ha vinculado a determinados productos como por ejemplo el reloj, e incluso, a algunos países como Suiza, pero realmente la precisión es un concepto bastante más amplio. En términos generales, un sistema preciso se puede entender como aquel sistema que realiza su cometido, su función, sin errores en cuanto a su objetivo y los errores son muy pequeños y cuantificables.
Hay tres conceptos muy relacionados que hay que entender cuando se habla de precisión: la exactitud, la repetibilidad y la resolución. Para explicarlos es muy común hacer referencia a un “cuentacuentos”. La exactitud es la veracidad de la historia que se cuenta, la repetibilidad es la capacidad para contar siempre la misma historia y la resolución son los detalles que explican la historia.
Para que un sistema se pueda considerar “de precisión” obviamente hay que conjugar los tres conceptos. Sin embargo, la realidad es que muchos de los esfuerzos de la ingeniería de precisión van centrados en asegurar la repetibilidad, ya que, aunque el objetivo final es la exactitud, es importante conocer y comprender la repetibilidad de los componentes y del sistema en su conjunto, porque la repetibilidad es el límite inferior de la precisión.
Desde sus inicios, Tekniker ha incluido la ingeniería de precisión como una de sus líneas de especialización y la ha puesto en práctica en el desarrollo de diversos equipos y sistemas como máquinas especiales de medida, instrumentación científica, equipos de ensayo, componentes de optoelectrónica, patrones de medida, etc.
Además del diseño de los sistemas con dichos conceptos, un elemento clave en la ingeniería de precisión es el proceso de fabricación de los mismos, que a su vez requieren de medios productivos concebidos y empleados como elementos de precisión.
Las demandas del mercado buscan la fabricación de elementos de mayores dimensiones manteniendo los requisitos de precisión o incluso aumentándolos, por eso cada vez más, las máquinas herramientas tienen que ser capaces de realizar funciones con mayores niveles de precisión.
Estas demandas son cada vez más exigentes para el sector de la máquina herramienta, que tiene que responder con nuevos desarrollos que desde su concepción incluyan los principios de la ingeniería de precisión, buscando una alta repetibilidad, evitando o limitando al máximo los efectos de las deformaciones térmicas, la fricción, las holguras, e introduciendo accionamientos precisos con sistemas que permitan cerrar el lazo de posición debidamente alineados, etc.
Para responder al reto de una fabricación cada vez más exigente, una de las tendencias es la de poder medir en la propia máquina durante la fabricación en base a distintos objetivos y dependiendo de la fase del proceso en la que se apliquen. En el caso de las mediciones realizadas en máquina, éstas permiten asegurar la alineación de la pieza en su amarre, realimentar el proceso para corregir deficiencias o validar la pieza una vez terminada.
El actual estado de la medición en máquina es cada vez más próximo a su aplicación en condiciones de taller, pero todavía se encuentra en una fase previa, es decir, a nivel de investigación. Los principales centros de investigación de fabricación avanzada como Fraunhofer (Alemania) y AMRC (Reino Unido) ya están empezando a mostrar los primeros demostradores de máquina herramienta con capacidad de medición en máquina.
En los últimos cinco años se han llevado a cabo varios proyectos de investigación, sobre todo a nivel europeo, en los que se ha tratado de solventar las problemáticas que afectan a este reto tecnológico.
Los retos que más afectan a la capacidad y calidad de una medición realizada en una máquina herramienta son las siguientes:
Dentro de su línea de investigación destinada a la fabricación avanzada, Tekniker ha apostado por la estrategia de “cero defectos”, que consiste, tal y como indica la propia palabra, en fabricar productos con cero defectos. Se trata de que todos los productos fabricados cumplan con la totalidad de los requisitos de calidad exigidos y diseñados, evitando de esta manera los desperdicios asociados a productos rechazados.
Esta estrategia es especialmente demandada por los procesos de fabricación que se emplean en la producción de componentes de gran tamaño y un alto valor añadido como los componentes destinados al sector eólico, aeronáutico o científico.
Estos componentes se deben fabricar bien en primera instancia, exigiendo durante el propio proceso de trabajo un feedback preciso y constante en las diferentes etapas que lo componen con el objetivo de reducir al mínimo el número de piezas defectuosas.
Así, las diferentes etapas del proceso de fabricación deben adoptar el enfoque cero defectos desde la entrada de las materias primas hasta la salida del producto final terminado.
Para llevar a cabo esta estrategia es necesario desarrollar las siguientes cuatro etapas del proceso de fabricación:
Este artículo aparece publicad en el nº 538 de Automática e Instrumentación págs. 46 a 47.
Ha abierto hasta el 20 de abril la convocatoria de nuevos participantes
Seguridad y formación toman especial relevancia en un momento en el que la IA da el siguiente paso
La conectividad de las fábricas abre la puerta a grandes peligros que deben ser resueltos incluso desde la fase de diseño
Analizamos las principales conclusiones de la Mesa Redonda AER: Robótica, Automatización e Inteligencia Artificial, claves del futuro 5.0
El 14 de mayo en el marco del Barcelona Cybersecurity Congress
Comentarios