Suscríbete
Suscríbete
Máquinas naturalmente flexibles

AEI 517 - Inteligencia artificial: El próximo horizonte digital

8296 ai quality assurance original 31092
|

Durante varias décadas, la inteligencia artificial (IA) había seguido siendo un concepto de ciencia ficción tal y como lo imaginaban los libros de Isaac Asimov. Gracias a estas numerosas obras de ciencia ficción, se inició una conversación alrededor de la IA y lo que podría significar integrar esta tecnología en escenarios del mundo real. Hoy en día, la IA es capaz de hacer de estas ideas una realidad, a pesar de que todavía está en una etapa naciente.


Lo que solían ser conceptos innovadores son ahora mega tendencias de futuro. Independientemente de todo el bombo alrededor de la IA, es solo ahora cuando estamos empezando a ver sus capacidades. La IA es una combinación de tecnologías inteligentes avanzadas que permite a las máquinas realizar tareas que tradicionalmente solo eran posibles utilizando la inteligencia humana. A medida que esta tecnología avance rápida y exponencialmente, no habrá límite a lo que la IA pueda lograr en multitud de sectores y funciones industriales.


La IA ha sido el foco de la investigación durante más de 30 años. Durante este tiempo, se han realizado importantes avances en esta área de la tecnología: por ejemplo, hardware y software más potentes y una mejor potencia informática y transmisión de datos. El uso de inteligencia artificial crea oportunidades completamente nuevas para una producción flexible y eficiente, incluso cuando se trata de productos complejos y cada vez más personalizados en pequeñas tiradas por lotes. Las consecuencias serán significativas, como muestra un estudio de Roland Berger: para 2035, los sistemas inteligentes en red digital y las cadenas de procesos podrían representar un crecimiento adicional de aproximadamente 420.000 millones de euros solo en Europa occidental. Según un estudio de PwC, la IA también puede contribuir a 15,7 billones de dólares a la economía mundial en 2030.


Las primeras aplicaciones reales de la inteligencia artificial ya están encontrando un lugar en las actividades industriales regulares, incluyendo el reconocimiento de lenguaje para realizar tareas básicas, documentar el entorno usando cámaras, rayos láser o rayos X, y proporcionar asistentes personales en logística. Según el estudio de PwC, un total de 62 % de las grandes empresas ya estaban utilizando la tecnología de IA en 2018.


Por todo lo expuesto anteriormente, la IA ya está a punto de convertirse en una palanca crucial para intensificar la productividad operativa y las empresas industriales ya han tomado nota. A medida que los sistemas de automatización convencionales como los PLC, DCS y Scada comienzan a integrarse con la IA, una nueva ola de digitalización está empezando a dar forma al futuro de la automatización industrial inteligente. La IA permite a las máquinas realizar tareas que tradicionalmente solo eran alcanzables por la inteligencia humana. Mediante la implementación de la combinación correcta de tecnologías de IA, los fabricantes pueden aumentar la eficiencia, mejorar la flexibilidad, acelerar la operación e incluso ser capaces de optimizar las operaciones.


Dondequiera que la industria pruebe la calidad del producto o de un proceso, supervise el estado de una máquina o transporte objetos, estas tareas pueden realizarse mediante módulos de control con capacidades de IA. Además, los clientes pueden diseñar sus propias redes neuronales y crear aplicaciones de IA que harán que sus procesos sean más eficientes.


Las redes neuronales son una tecnología que imita el cerebro humano en el que se es capaz de reconocer patrones complejos. Con esto en mente, al agregar IA a través de redes neuronales a los programas de control tradicionales, que fueron diseñados para ejecutar una tarea establecida, las capacidades del sistema se pueden ampliar para cambiar en función de los parámetros del producto o proceso. En resumen: las máquinas se vuelven naturalmente flexibles.


La IA, por tanto, desempeñará un papel clave en la reducción del esfuerzo de programación e ingeniería necesario para crear soluciones de automatización. También está haciendo que la lógica de control sea más ágil y los procesos de producción sean más flexibles y precisos, especialmente en la industria. Por ejemplo, los algoritmos de aprendizaje automático ayudan a los sistemas que realizan controles de calidad visual en plantas de producción o sistemas robóticos guiados por imágenes a reaccionar con mucha más flexibilidad ante situaciones inesperadas y a defectos de calidad porque pueden responder automáticamente durante ejecución. Como resultado, funcionan de manera mucho más eficiente, porque el conocimiento experto, por ejemplo, con respecto al color, la consistencia o la calidad de un producto o proceso, se puede transmitir a la automatización.


Los típicos ejemplos a nivel industrial que se están implementando a día de hoy mayormente se basan en tres aspectos:


Reconocimiento inteligente de objetos de cualquier pieza de trabajo


Se utilizan las capacidades de las redes neuronales para reconocer patrones complejos. Los datos de entrada se procesan con la ayuda de los conocimientos adquiridos a través del aprendizaje automático. Esto significa que incluso componentes y piezas desconocidas pueden ser reconocidos en cualquier ubicación o posición.


Se reduce el tiempo de ingeniería al eliminar el lento proceso de aprendizaje de los objetos individuales y también aumenta la productividad al evitar el desperdicio.


Comprobación de la calidad visual de los productos


El procesamiento de datos de imagen en la red neuronal permite una detección visual fiable de defectos de calidad. Utilizando algoritmos entrenados, los datos de imagen se comparan con características de calidad predefinidas y extremadamente complejas. Esto elimina errores inesperados en el proceso en curso y garantiza una calidad constante del producto.


Las estaciones de control de calidad al final de las líneas de producción crean normalmente un cuello de botella en muchos procesos de producción, ya que comprobar la calidad del producto a menudo consume mucho tiempo.


Además, la comprobación de la calidad de los productos más complejos a menudo ha necesitado ser realizado manualmente. Con estos sistemas, los operadores ahora pueden comprobar la calidad de los productos cada vez más complejos de forma automática, lo que también significa más rápido, más rentable y de forma más fiable.


Comprobación de calidad mediante sensores y datos de producción


En muchas secuencias de producción, la visión general y la evaluación de los datos de producción, como la energía, la temperatura, la presión y la superficie, proporcionan una base fiable para la detección temprana de defectos de calidad.


Siemens está trabajando en distintos tipos de soluciones integradas tanto en equipos de automatización directamente, como en Edge o incluso en Cloud. De hecho, en el primer caso de soluciones integradas, hemos desarrollado un módulo que permite a los clientes ejecutar su propia red neuronal en un control industrial y producir aplicaciones de IA que automatizarán sus procesos y los harán más eficientes.


También con respecto al segundo y tercer caso Edge y/o Cloud, tenemos una aplicación concreta implementada en nuestra fábrica de Amberg, en la cual teníamos un cuello de botella en una línea de fabricación, ya que el elemento de inspección al final de la línea retrasaba la salida del material que se estaba fabricando en esa línea. A través de un sistema de inteligencia artificial que montamos tanto a nivel de Cloud donde entrenábamos la red neuronal, como a nivel de Edge, donde se toman las decisiones, conseguimos una reducción del 30% en los esfuerzos de test y como consecuencia no tener que desdoblar el final de la línea con dos equipos de inspección lo cual nos hubiera supuesto costes por un valor superior a medio millón de euros, eso sí, manteniendo el 100% la calidad del producto fabricado.


Ignacio Álvarez Vargas
Director Técnico de Digitalización de FA en Siemens España


Este artículo aparece publicado en el nº 517 de Automática e Instrumentación, pág. 58-60.

Comentarios

Foto grupal inauguració Fira Robòtica
Foto grupal inauguració Fira Robòtica

Organizada por el Ayuntamiento de Guissona, bonÀrea y CaixaGuissona 

Beckhoff CX729x web
Beckhoff CX729x web
Beckhoff

Dispositivos para BACnet/IP y dispositivo PROFINET RT

Centros de datos
Centros de datos
Vertiv

Vertiv destaca la evolución de la infraestructura energética, regulación y colaboración en la era de la inteligencia artificial

Zebra machine vision
Zebra machine vision
Zebra

Zebra Technologies destaca el papel clave del software unificado en la era de los vehículos eléctricos y autónomos

Caf
Caf

Empresas, administraciones y expertos analizan retos de innovación y tecnología en el primer Día de la Consultoría

Une y puertos del estado
Une y puertos del estado
UNE Puertos del Estado

Establece actividades y servicios que debe ofrecer un puerto para considerarse puerto inteligente 

Arbentia Técnico
Arbentia Técnico
Arbentia

El mantenimiento predictivo puede reducir un 30% los costes de reparación y un 70% el tiempo de inactividad imprevisto

Revista Automática e Instrumentación
NÚMERO 559 // Octubre 2024

Empresas destacadas

Acepto recibir comunicaciones comerciales relacionadas con el sector.

REVISTA